Recursive estimation of EWMA model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10400157" target="_blank" >RIV/00216208:11320/19:10400157 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p8bDYiFZ15" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p8bDYiFZ15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21314/JOR.2019.413" target="_blank" >10.21314/JOR.2019.413</a>
Alternative languages
Result language
angličtina
Original language name
Recursive estimation of EWMA model
Original language description
The exponentially weighted moving average (EWMA) model is a particular modeling scheme, supported by RiskMetrics, that is capable of forecasting the current level of volatility of financial time series. It is designed to track changes in the conditional variance of financial returns by assigning exponentially decreasing weights to observed past squared measurements. The aim of this paper is twofold. First, it introduces two recursive estimation algorithms that are appropriate for the EWMA model. Both are derived by employing the general recursive prediction error scheme. Moreover, they represent a computationally effective alternative to already established nonrecursive estimation strategies since they are effective in terms of memory storage, computational complexity and detecting structural changes. Second, this paper investigates the prediction ability of the proposed recursive estimation schemes when compared with other common (nonrecursive) estimation methods. The priorities of the suggested recursive estimators are demonstrated by means of a simulation study and an extensive empirical case study of eighteen key world stock indexes. Combinations of recursive predictions are also studied. Such a strategy can be recommended due to its advantageous properties when predicting volatility.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA17-00676S" target="_blank" >GA17-00676S: Dynamic models of risk in finance and insurance</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal Of Risk
ISSN
1465-1211
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
25
Pages from-to
43-67
UT code for WoS article
000481987900003
EID of the result in the Scopus database
2-s2.0-85072680194