All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tolerances, robustness and parametrization of matrix properties related to optimization problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401024" target="_blank" >RIV/00216208:11320/19:10401024 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wL1gO75O3i" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wL1gO75O3i</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/02331934.2018.1545837" target="_blank" >10.1080/02331934.2018.1545837</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tolerances, robustness and parametrization of matrix properties related to optimization problems

  • Original language description

    When we speak about parametric programming, sensitivity analysis or related topics, we usually mean the problem of studying specified perturbations of the data such that for a given optimization problem some optimality criterion remains satisfied. In this paper, we turn to another question. Suppose that A is a matrix having a specific property . What are the maximal allowable variations of the data such that the property still remains valid for the matrix? We study two basic forms of perturbations. The first is a perturbation in a given direction, which is closely related to parametric programming. The second type consists of all possible data variations in a neighbourhood specified by a certain matrix norm; this is related to the tolerance approach to sensitivity analysis or to stability. The matrix properties discussed in this paper are positive definiteness; M-matrix, H-matrix and P-matrix property; total positivity; inverse M-matrix property and inverse nonnegativity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50201 - Economic Theory

Result continuities

  • Project

    <a href="/en/project/GA18-04735S" target="_blank" >GA18-04735S: Novel approaches for relaxation and approximation techniques in deterministic global optimization</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Optimization

  • ISSN

    0233-1934

  • e-ISSN

  • Volume of the periodical

    68

  • Issue of the periodical within the volume

    2-3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    24

  • Pages from-to

    667-690

  • UT code for WoS article

    000462381900013

  • EID of the result in the Scopus database

    2-s2.0-85057306882