Universal quadratic forms over multiquadratic fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401328" target="_blank" >RIV/00216208:11320/19:10401328 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=odv-SM1K4~" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=odv-SM1K4~</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11139-017-9965-7" target="_blank" >10.1007/s11139-017-9965-7</a>
Alternative languages
Result language
angličtina
Original language name
Universal quadratic forms over multiquadratic fields
Original language description
For all positive integers k and N, we prove that there are infinitely many totally real multiquadratic fields K of degree over such that each universal quadratic form over K has at least N variables.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Ramanujan Journal
ISSN
1382-4090
e-ISSN
—
Volume of the periodical
48
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
7
Pages from-to
151-157
UT code for WoS article
000457944800011
EID of the result in the Scopus database
2-s2.0-85038072576