Triangle-free planar graphs with the smallest independence number
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401424" target="_blank" >RIV/00216208:11320/19:10401424 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9gSYcj9dTY" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9gSYcj9dTY</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.22406" target="_blank" >10.1002/jgt.22406</a>
Alternative languages
Result language
angličtina
Original language name
Triangle-free planar graphs with the smallest independence number
Original language description
Steinberg and Tovey proved that every n-vertex planar triangle-free graph has an independent set of size at least (n + 1)/3, and described an infinite class of tight examples. We show that all n-vertex planar triangle-free graphs except for this one infinite class have independent sets of size at least (n + 2)/3.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-19503S" target="_blank" >GA14-19503S: Graph coloring and structure</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Volume of the periodical
90
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
443-454
UT code for WoS article
000463967200010
EID of the result in the Scopus database
2-s2.0-85053678314