All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On monotone circuits with local oracles and clique lower bounds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401463" target="_blank" >RIV/00216208:11320/19:10401463 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0PU5oLJMKa" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0PU5oLJMKa</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4086/cjtcs.2018.001" target="_blank" >10.4086/cjtcs.2018.001</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On monotone circuits with local oracles and clique lower bounds

  • Original language description

    We investigate monotone circuits with local oracles [K., 2016], i.e., circuits containing additional inputs y i =y i (x ⃗ ) that can perform unstructured computations on the input string x ⃗ . Let μELEMENT OF[0,1] be the locality of the circuit, a parameter that bounds the combined strength of the oracle functions y i (x ⃗ ) , and U n,k ,V n,k SUBSET OF OR EQUAL TO {0,1} m be the set of k -cliques and the set of complete (k-1) -partite graphs, respectively (similarly to [Razborov, 1985]). Our results can be informally stated as follows. 1. For an appropriate extension of depth-2 monotone circuits with local oracles, we show that the size of the smallest circuits separating U n,3 (triangles) and V n,3 (complete bipartite graphs) undergoes two phase transitions according to μ . 2. For 5&lt;=k(n)&lt;=n 1/4 , arbitrary depth, and μ&lt;=1/50 , we prove that the monotone circuit size complexity of separating the sets U n,k and V n,k is n Θ(k SQUARE ROOT ) , under a certain restrictive assumption on the local oracle gates. The second result, which concerns monotone circuits with restricted oracles, extends and provides a matching upper bound for the exponential lower bounds on the monotone circuit size complexity of k -clique obtained by Alon and Boppana (1987).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE

  • ISSN

    1073-0486

  • e-ISSN

  • Volume of the periodical

    2018

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    1-18

  • UT code for WoS article

  • EID of the result in the Scopus database