Uniqueness and regularity of flows of non-Newtonian fluids with critical power-law growth
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401798" target="_blank" >RIV/00216208:11320/19:10401798 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nDRD2ua5dX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nDRD2ua5dX</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202519500209" target="_blank" >10.1142/S0218202519500209</a>
Alternative languages
Result language
angličtina
Original language name
Uniqueness and regularity of flows of non-Newtonian fluids with critical power-law growth
Original language description
We deal with flows of non-Newtonian fluids in three-dimensional setting subjected to the homogeneous Dirichlet boundary condition. Under the natural monotonicity, coercivity and growth condition on the Cauchy stress tensor expressed by a power index p >= 11/5, we establish regularity properties of a solution with respect to time variable. Consequently, we can use this better information for showing the uniqueness of the solution provided that the initial data are good enough for all power-law indices p >= 11/5. Such a result was available for p >= 12/5 and therefore the paper fills the gap and extends the uniqueness result to the whole range of p's for which the energy equality holds.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
6
Country of publishing house
SG - SINGAPORE
Number of pages
19
Pages from-to
—
UT code for WoS article
000471780800005
EID of the result in the Scopus database
2-s2.0-85065118571