Dynamic Scoring: Probabilistic Model Selection Based on Utility Maximization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401994" target="_blank" >RIV/00216208:11320/19:10401994 - isvavai.cz</a>
Alternative codes found
RIV/64941663:_____/19:N0000001
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qQcMdw~tdF" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qQcMdw~tdF</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e21010036" target="_blank" >10.3390/e21010036</a>
Alternative languages
Result language
angličtina
Original language name
Dynamic Scoring: Probabilistic Model Selection Based on Utility Maximization
Original language description
We propose a novel approach of model selection for probability estimates that may be applied in time evolving setting. Specifically, we show that any discrepancy between different probability estimates opens a possibility to compare them by trading on a hypothetical betting market that trades probabilities. We describe the mechanism of such a market, where agents maximize some utility function which determines the optimal trading volume for given odds. This procedure produces supply and demand functions, that determine the size of the bet as a function of a trading probability. These functions are closed form for the choice of logarithmic and exponential utility functions. Having two probability estimates and the corresponding supply and demand functions, the trade matching these estimates happens at the intersection of the supply and demand functions. We show that an agent using correct probabilities will realize a profit in expectation when trading against any other set of probabilities. The expected profit realized by the correct view of the market probabilities can be used as a measure of information in terms of statistical divergence.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA16-21216S" target="_blank" >GA16-21216S: Portfolio management with multiple benchmarks</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Entropy
ISSN
1099-4300
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
36
UT code for WoS article
000459740300036
EID of the result in the Scopus database
2-s2.0-85060391361