All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Phase Transition in Matched Formulas and a Heuristic for Biclique Satisfiability

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10402519" target="_blank" >RIV/00216208:11320/19:10402519 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-10801-4_10" target="_blank" >https://doi.org/10.1007/978-3-030-10801-4_10</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-10801-4_10" target="_blank" >10.1007/978-3-030-10801-4_10</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Phase Transition in Matched Formulas and a Heuristic for Biclique Satisfiability

  • Original language description

    A matched formula is a CNF formula whose incidence graph admits a matching which matches a distinct variable to every clause. We study phase transition in a context of matched formulas and their generalization of biclique satisfiable formulas. We have performed experiments to find a phase transition of property &quot;being matched&quot; with respect to the ratio m/n where m is the number of clauses and n is the number of variables of the input formula ϕ. We compare the results of experiments to a theoretical lower bound which was shown by Franco and Van Gelder [11]. Any matched formula is satisfiable, and it remains satisfiable even if we change polarities of any literal occurrences. Szeider [17] generalized matched formulas into two classes having the same property-varsatisfiable and biclique satisfiable formulas. A formula is biclique satisfiable if its incidence graph admits covering by pairwise disjoint bounded bicliques. Recognizing if a formula is biclique satisfiable is NP-complete. In this paper we describe a heuristic algorithm for recognizing whether a formula is biclique satisfiable and we evaluate it by experiments on random formulas. We also describe an encoding of the problem of checking whether a formula is biclique satisfiable into SAT and we use it to evaluate the performance of our heuristic.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    SOFSEM 2019: Theory and Practice of Computer Science

  • ISBN

    978-3-030-10800-7

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    108-121

  • Publisher name

    Springer Switzerland

  • Place of publication

    Cham, Switzerland

  • Event location

    Nový Smokovec, Slovakia

  • Event date

    Jan 27, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article