Phase Transition in Matched Formulas and a Heuristic for Biclique Satisfiability
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10402519" target="_blank" >RIV/00216208:11320/19:10402519 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-10801-4_10" target="_blank" >https://doi.org/10.1007/978-3-030-10801-4_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-10801-4_10" target="_blank" >10.1007/978-3-030-10801-4_10</a>
Alternative languages
Result language
angličtina
Original language name
Phase Transition in Matched Formulas and a Heuristic for Biclique Satisfiability
Original language description
A matched formula is a CNF formula whose incidence graph admits a matching which matches a distinct variable to every clause. We study phase transition in a context of matched formulas and their generalization of biclique satisfiable formulas. We have performed experiments to find a phase transition of property "being matched" with respect to the ratio m/n where m is the number of clauses and n is the number of variables of the input formula ϕ. We compare the results of experiments to a theoretical lower bound which was shown by Franco and Van Gelder [11]. Any matched formula is satisfiable, and it remains satisfiable even if we change polarities of any literal occurrences. Szeider [17] generalized matched formulas into two classes having the same property-varsatisfiable and biclique satisfiable formulas. A formula is biclique satisfiable if its incidence graph admits covering by pairwise disjoint bounded bicliques. Recognizing if a formula is biclique satisfiable is NP-complete. In this paper we describe a heuristic algorithm for recognizing whether a formula is biclique satisfiable and we evaluate it by experiments on random formulas. We also describe an encoding of the problem of checking whether a formula is biclique satisfiable into SAT and we use it to evaluate the performance of our heuristic.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
SOFSEM 2019: Theory and Practice of Computer Science
ISBN
978-3-030-10800-7
ISSN
0302-9743
e-ISSN
—
Number of pages
14
Pages from-to
108-121
Publisher name
Springer Switzerland
Place of publication
Cham, Switzerland
Event location
Nový Smokovec, Slovakia
Event date
Jan 27, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—