Central limit theorems and minimum-contrast estimators for linear stochastic evolution equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10402866" target="_blank" >RIV/00216208:11320/19:10402866 - isvavai.cz</a>
Alternative codes found
RIV/60461373:22340/19:43918579
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AONdag6_Pq" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AONdag6_Pq</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/17442508.2019.1576688" target="_blank" >10.1080/17442508.2019.1576688</a>
Alternative languages
Result language
angličtina
Original language name
Central limit theorems and minimum-contrast estimators for linear stochastic evolution equations
Original language description
Central limit theorems and asymptotic properties of the minimum-contrast estimators of the drift parameter in linear stochastic evolution equations driven by fractional Brownian motion are studied. Both singular ( and regular ( types of fractional Brownian motion are considered. Strong consistency is achieved by ergodicity of the stationary solution. The fundamental tool for the limit theorems and asymptotic normality (shown for Hurst parameter ) is the so-called 4th moment theorem considered on the second Wiener chaos. This technique provides also the Berry-Esseen-type bounds for the speed of the convergence. The general results are illustrated for parabolic equations with distributed and pointwise fractional noises.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA15-08819S" target="_blank" >GA15-08819S: Stochastic Processes in Infinite Dimensional Spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Stochastics-An International Journal of Probability and Stochastic Processes
ISSN
1744-2508
e-ISSN
—
Volume of the periodical
91
Issue of the periodical within the volume
8
Country of publishing house
GB - UNITED KINGDOM
Number of pages
32
Pages from-to
1109-1140
UT code for WoS article
000492485600003
EID of the result in the Scopus database
2-s2.0-85061445584