On grounded L-graphs and their relatives
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403026" target="_blank" >RIV/00216208:11320/19:10403026 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0uZytfA.oD" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0uZytfA.oD</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37236/8096" target="_blank" >10.37236/8096</a>
Alternative languages
Result language
angličtina
Original language name
On grounded L-graphs and their relatives
Original language description
We consider the graph classes GROUNDED-L and GROUNDED-{L, inverted-L} corresponding to graphs that admit an intersection representation by L-shaped curves (or L-shaped and (inverted-L)-shaped curves, respectively), where additionally the topmost points of each curve are assumed to belong to a common horizontal line. We prove that GROUNDED-L graphs admit an equivalent characterisation in terms of vertex ordering with forbidden patterns. We also compare these classes to related intersection classes, such as the grounded segment graphs, the monotone L-graphs (a.k.a. max point-tolerance graphs), or the outer-1-string graphs. We give constructions showing that these classes are all distinct and satisfy only trivial or previously known inclusions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-19158S" target="_blank" >GA18-19158S: Algorithmic, structural and complexity aspects of geometric and other configurations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Combinatorics
ISSN
1077-8926
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
P3.17
UT code for WoS article
000475972800006
EID of the result in the Scopus database
—