A Tight Lower Bound for Planar Steiner Orientation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403064" target="_blank" >RIV/00216208:11320/19:10403064 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/19:00338417
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cR7ytSXKfQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cR7ytSXKfQ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-019-00580-x" target="_blank" >10.1007/s00453-019-00580-x</a>
Alternative languages
Result language
angličtina
Original language name
A Tight Lower Bound for Planar Steiner Orientation
Original language description
In the Steiner Orientation problem, the input is a mixed graph G (it has both directed and undirected edges) and a set of k terminal pairs T. The question is whether we can orient the undirected edges in a way such that there is a directed s-t path for each terminal pair (s,t)T. Arkin and Hassin [DAM'02] showed that the Steiner Orientation problem is NP-complete. They also gave a polynomial time algorithm for the special case when k=2. From the viewpoint of exact algorithms, Cygan et al.[ESA'12, SIDMA'13] designed an XP algorithm running in n^O(k) time for all k>=1. Pilipczuk and Wahlstrom [SODA'16, TOCT'18] showed that the Steiner Orientation problem is W[1]-hard parameterized by k. As a byproduct of their reduction, they were able to show that under the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [JCSS'01] the Steiner Orientation problem does not admit an f(k)*n^o(k/logk) algorithm for any computable function f. In this paper, we give a short and easy proof that the n^O(k) algorithm of Cygan etal. is asymptotically optimal, even if the input graph is planar. Formally, we show that the Planar Steiner Orientation problem is W[1]-hard parameterized by the number k of terminal pairs, and, under ETH, cannot be solved in f(k)n^o(k) time for any computable function f.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algorithmica
ISSN
0178-4617
e-ISSN
—
Volume of the periodical
81
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
3200-3216
UT code for WoS article
000472831500007
EID of the result in the Scopus database
2-s2.0-85065334356