Numerical scheme for simulation of transient flows of non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient and the Cauchy stress tensor
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403139" target="_blank" >RIV/00216208:11320/19:10403139 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OWk8qe2sLL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OWk8qe2sLL</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00707-019-2372-y" target="_blank" >10.1007/s00707-019-2372-y</a>
Alternative languages
Result language
angličtina
Original language name
Numerical scheme for simulation of transient flows of non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient and the Cauchy stress tensor
Original language description
We propose a numerical scheme for simulation of transient flows of incompressible non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient (shear rate) and the Cauchy stress tensor (shear stress). The main difficulty in dealing with the governing equations for flows of such fluids is that the non-monotone constitutive relation allows several values of the stress to be associated with the same value of the symmetric part of the velocity gradient. This issue is handled via a reformulation of the governing equations. The equations are reformulated as a system for the triple pressure-velocity-apparent viscosity, where the apparent viscosity is given by a scalar implicit equation. We prove that the proposed numerical scheme has-on the discrete level-a solution, and using the proposed scheme, we numerically solve several flow problems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mechanica
ISSN
0001-5970
e-ISSN
—
Volume of the periodical
230
Issue of the periodical within the volume
3
Country of publishing house
AT - AUSTRIA
Number of pages
19
Pages from-to
729-747
UT code for WoS article
000459979500002
EID of the result in the Scopus database
2-s2.0-85061642470