All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Subexponential-Time Algorithms for Finding Large Induced Sparse Subgraphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403420" target="_blank" >RIV/00216208:11320/19:10403420 - isvavai.cz</a>

  • Result on the web

    <a href="https://drops.dagstuhl.de/opus/volltexte/2019/11484/pdf/LIPIcs-IPEC-2019-23.pdf" target="_blank" >https://drops.dagstuhl.de/opus/volltexte/2019/11484/pdf/LIPIcs-IPEC-2019-23.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2019.23" target="_blank" >10.4230/LIPIcs.IPEC.2019.23</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Subexponential-Time Algorithms for Finding Large Induced Sparse Subgraphs

  • Original language description

    Let C and D be hereditary graph classes. Consider the following problem: given a graph G in D, find a largest, in terms of the number of vertices, induced subgraph of G that belongs to C. We prove that it can be solved in 2^{o(n)} time, where n is the number of vertices of G, if the following conditions are satisfied: - the graphs in C are sparse, i.e., they have linearly many edges in terms of the number of vertices; - the graphs in D admit balanced separators of size governed by their density, e.g., O(Delta) or O(sqrt{m}), where Delta and m denote the maximum degree and the number of edges, respectively; and - the considered problem admits a single-exponential fixed-parameter algorithm when parameterized by the treewidth of the input graph. This leads, for example, to the following corollaries for specific classes C and D: - a largest induced forest in a P_t-free graph can be found in 2^{O~(n^{2/3})} time, for every fixed t; and - a largest induced planar graph in a string graph can be found in 2^{O~(n^{3/4})} time.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    14th International Symposium on Parameterized and Exact Computation (IPEC 2019)

  • ISBN

    978-3-95977-129-0

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    1-11

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Dagstuhl, Germany

  • Event date

    Sep 11, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article