Quantum L Algebras and the Homological Perturbation Lemma
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403801" target="_blank" >RIV/00216208:11320/19:10403801 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sWmUjr7liF" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sWmUjr7liF</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00220-019-03375-x" target="_blank" >10.1007/s00220-019-03375-x</a>
Alternative languages
Result language
angličtina
Original language name
Quantum L Algebras and the Homological Perturbation Lemma
Original language description
Quantum L algebras are a generalization of L algebras with a scalar product and with operations corresponding to higher genus graphs. We construct a minimal model of a given quantum L algebra via the homological perturbation lemma and show that it's given by a Feynman diagram expansion, computing the effective action in the finite-dimensional Batalin-Vilkovisky formalism. We also construct a homotopy between the original and this effective quantum L algebra.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
—
Volume of the periodical
367
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
26
Pages from-to
215-240
UT code for WoS article
000462908800007
EID of the result in the Scopus database
2-s2.0-85062594005