Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403968" target="_blank" >RIV/00216208:11320/19:10403968 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RRxEyb.N0R" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RRxEyb.N0R</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imanum/drx070" target="_blank" >10.1093/imanum/drx070</a>
Alternative languages
Result language
angličtina
Original language name
Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon
Original language description
This article is concerned with the analysis of the discontinuous Galerkin method (DGM) for the numerical solution of an elliptic boundary value problem with a nonlinear Newton boundary condition in a two-dimensional polygonal domain. The growth of the nonlinearity is not compatible with the differential equation, which represents an obstacle in the analysis of the problem. Using monotone operator theory, it is possible to prove the existence and uniqueness of the weak solution and the approximate DG solution. The main emphasis is on the study of error estimates. To this end, the regularity of the weak solution is investigated, and it is shown that due to the singular boundary points, the solution loses regularity in the vicinity of these points. It transpires that the error estimation depends essentially on the opening angle of the corner points and the nonlinearity in the boundary term. It also depends on the parameter defining the nonlinear behaviour of the Newton boundary condition. At the end of this article, some computational experiments are presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IMA Journal of Numerical Analysis
ISSN
0272-4979
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
31
Pages from-to
423-453
UT code for WoS article
000491255100015
EID of the result in the Scopus database
2-s2.0-85063377689