Numerical simulation of two-phase flow by the finite element, discontinuous Galerkin methods and the level set method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403986" target="_blank" >RIV/00216208:11320/19:10403986 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/19:00337294
Result on the web
<a href="https://doi.org/10.1063/1.5114013" target="_blank" >https://doi.org/10.1063/1.5114013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5114013" target="_blank" >10.1063/1.5114013</a>
Alternative languages
Result language
angličtina
Original language name
Numerical simulation of two-phase flow by the finite element, discontinuous Galerkin methods and the level set method
Original language description
The subject of the paper is the numerical simulation of two-phase flow of immiscible fluids. Their motion is described by the incompressible Navier-Stokes equations with piecewise constant density and viscosity. The interface between the fluids is defined with the level set method using a transport first-order hyperbolic equation. The Navier-Stokes problem is discretized by the Taylor-Hood P2/P1 finite elements combined with second-order BDF method in time. The transport level set problem is solved with the aid of the space-time discontinuous Galerkin method.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings 2116, 030029 (2019)
ISBN
978-0-7354-1854-7
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
1-4
Publisher name
American Institut of Physics
Place of publication
Neuveden
Event location
Rhodes
Event date
Sep 13, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—