All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Development of Vacancies during Severe Plastic Deformation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404023" target="_blank" >RIV/00216208:11320/19:10404023 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=x5iOBl16P7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=x5iOBl16P7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2320/matertrans.MF201937" target="_blank" >10.2320/matertrans.MF201937</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Development of Vacancies during Severe Plastic Deformation

  • Original language description

    A high density of lattice defects is introduced to materials by severe plastic deformation (SPD). Numerous experimental techniques, in particular electron microscopy, X-ray, electron and neutron diffraction, etc. are employed to characterize the evolution of microstructure and defects with strain introduced to the material by SPD. These techniques concentrate mainly on the investigation of planar (grain boundaries) and line defects (dislocations). On the other hand, point defects, namely vacancies and their agglomerates are investigated in less detail. Positron annihilation spectroscopy (PAS) proved to be an effective method for the investigation of point defects and dislocations in ultra-fine grained (UFG) materials. This study summarizes the results of the investigation of lattice defects in UFG metals with fcc (Al, Ni, Cu), bcc (Fe, Nb, W) and hcp (Mg, Ti) structure prepared by high pressure torsion (HPT). Two techniques of PAS were employed (i) positron lifetime spectroscopy (LT) allowing to characterize the type and concentration ratio of lattice defects in the severely deformed material and (ii) Doppler broadening (DB) of annihilation radiation providing analysis of the homogeneity of the UFG structure and spatial distribution of defects. The latter technique was complemented by mapping of microhardness distribution throughout the surface of the HPT specimens. The LT studies revealed that HPT straining at room temperature introduced not only dislocations but also a high concentration of vacancies. A significant fraction of deformation-induced vacancies disappeared by diffusion to sinks at grain boundaries. Remaining vacancies agglomerated into vacancy clusters. The average size of vacancy clusters differs in various metals and is affected by the activation energy for migration of vacancies in the given material. The analysis of DB of positron annihilation radiation and its correlation with microhardness distribution indicated that dislocation density tends to saturate with strain. On the other hand, the spatial (lateral) distribution of vacancy clusters remains non-uniform even in samples subjected to a high number of HPT revolutions. The average size of vacancy clusters increases with radial distance from the centre of the sample due to the increasing production rate of vacancies.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials Transactions

  • ISSN

    1345-9678

  • e-ISSN

  • Volume of the periodical

    60

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    JP - JAPAN

  • Number of pages

    10

  • Pages from-to

    1533-1542

  • UT code for WoS article

    000478886400018

  • EID of the result in the Scopus database

    2-s2.0-85069658123