Semipolar Sets and Intrinsic Hausdorff Measure
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404070" target="_blank" >RIV/00216208:11320/19:10404070 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=hHBu0hBxF" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=hHBu0hBxF</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11118-018-9702-x" target="_blank" >10.1007/s11118-018-9702-x</a>
Alternative languages
Result language
angličtina
Original language name
Semipolar Sets and Intrinsic Hausdorff Measure
Original language description
In a general potential-theoretic setting, results on the size of semipolar sets in terms of intrinsic measure of Hausdorff type defined by means of abstract "Green function" are established. In special situations, as for classical potential theory or Riesz potential theory, the intrinsic measure is equivalent to an ordinary Hausdorff measure of a suitable dimension. For the space- time situations, as, for example, the heat potential theory, the intrinsic measure is equivalent to an anisotropic Hausdorff measure. For this case, our result solves an open problem from a paper by S.J. Taylor and N.A.Watson published in 1985.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Potential Analysis
ISSN
0926-2601
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
49-69
UT code for WoS article
000475709900004
EID of the result in the Scopus database
2-s2.0-85046746247