Counterexample to an extension of the Hanani-Tutte theorem on the surface of genus 4
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404424" target="_blank" >RIV/00216208:11320/19:10404424 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tRu9H~Pf36" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tRu9H~Pf36</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00493-019-3905-7" target="_blank" >10.1007/s00493-019-3905-7</a>
Alternative languages
Result language
angličtina
Original language name
Counterexample to an extension of the Hanani-Tutte theorem on the surface of genus 4
Original language description
We find a graph of genus 5 and its drawing on the orientable surface of genus 4 with every pair of independent edges crossing an even number of times. This shows that the strong Hanani-Tutte theorem cannot be extended to the orientable surface of genus 4. As a base step in the construction we use a counterexample to an extension of the unified Hanani-Tutte theorem on the torus.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ16-01602Y" target="_blank" >GJ16-01602Y: Topological and geometric approaches to classes of permutations and graph properties</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Combinatorica
ISSN
0209-9683
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
6
Country of publishing house
DE - GERMANY
Number of pages
13
Pages from-to
1267-1279
UT code for WoS article
000493267200003
EID of the result in the Scopus database
2-s2.0-85074638886