Binary linear codes via 4D discrete Ihara-Selberg function
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404799" target="_blank" >RIV/00216208:11320/19:10404799 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Zt4Jf5Y6CX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Zt4Jf5Y6CX</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/AIHPD/65" target="_blank" >10.4171/AIHPD/65</a>
Alternative languages
Result language
angličtina
Original language name
Binary linear codes via 4D discrete Ihara-Selberg function
Original language description
We express the weight enumerator of each binary linear code, in particular the Ising partition function of an arbitrary finite graph, as a formal infinite product. An analogous result was obtained by Feynman and Sherman in the beginning of the 1960's for the special case of the Ising partition function of the planar graphs. A product expression is an important step towards understanding the logarithm of the Ising partition function, for general graphs and in particular for the cubic 3D lattices.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-21988S" target="_blank" >GA13-21988S: Enumeration in informatics and optimization</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales de l'Institut Henri Poincare (D) Combinatorics, Physics and their Interactions
ISSN
2308-5827
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
23
Pages from-to
73-95
UT code for WoS article
000458038500003
EID of the result in the Scopus database
2-s2.0-85064229280