The Precise Complexity of Finding Rainbow Even Matchings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404803" target="_blank" >RIV/00216208:11320/19:10404803 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-21363-3_16" target="_blank" >https://doi.org/10.1007/978-3-030-21363-3_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-21363-3_16" target="_blank" >10.1007/978-3-030-21363-3_16</a>
Alternative languages
Result language
angličtina
Original language name
The Precise Complexity of Finding Rainbow Even Matchings
Original language description
A progress in complexity lower bounds might be achieved by studying problems where a very precise complexity is conjectured. In this note we propose one such problem: Given a planar graph on n vertices and disjoint pairs of its edges p(1), ... , p(g), perfect matching M is Rainbow Even Matching (REM) if vertical bar M boolean AND p(i)vertical bar is even for each i = 1, ... , g. A straightforward algorithm finds a REM or asserts that no REM exists in 2(g) x poly(n) steps and we conjecture that no deterministic or randomised algorithm has complexity asymptotically smaller than 2(g). Our motivation is also to pinpoint the curse of dimensionality of the MAX-CUT problem for graphs embedded into orientable surfaces: a basic problem of statistical physics.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ALGEBRAIC INFORMATICS, CAI 2019
ISBN
978-3-030-21362-6
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
12
Pages from-to
190-201
Publisher name
SPRINGER INTERNATIONAL PUBLISHING AG
Place of publication
CHAM
Event location
Nis
Event date
Jun 30, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000489762600018