All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Living on the edge of instability

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405369" target="_blank" >RIV/00216208:11320/19:10405369 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wxr0mJIjeX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wxr0mJIjeX</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1742-5468/ab333f" target="_blank" >10.1088/1742-5468/ab333f</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Living on the edge of instability

  • Original language description

    Statistical description of stochastic dynamics in highly unstable potentials is strongly affected by properties of divergent trajectories, that quickly leave meta-stable regions of the potential landscape and never return. Using ideas from theory of Q-processes and quasi-stationary distributions, we analyze position statistics of non-diverging trajectories. We discuss two limit distributions which can be considered as (formal) generalizations of the Gibbs canonical distribution to highly unstable systems. Even though the associated effective potentials differ only slightly, properties of the two distributions are fundamentally different for all highly unstable system. The distribution for trajectories conditioned to diverge in an infinitely distant future is localized and light-tailed. The other distribution, describing trajectories surviving in the meta-stable region at the instant of conditioning, is heavy-tailed. The exponent of the corresponding power-law tail is determined by the leading divergent term of the unstable potential. We discuss different equivalent forms of the two distributions and derive properties of the effective statistical force arising in the ensemble of non-diverging trajectories after the Doob h-transform. The obtained explicit results generically apply to non-linear dynamical models with meta-stable states and fast kinetic transitions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10300 - Physical sciences

Result continuities

  • Project

    <a href="/en/project/GA17-06716S" target="_blank" >GA17-06716S: Stochastic thermodynamics of molecular systems: from classical to quantum</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Statistical Mechanics: Theory and Experiment

  • ISSN

    1742-5468

  • e-ISSN

  • Volume of the periodical

    Neuveden

  • Issue of the periodical within the volume

    August 2019

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    18

  • Pages from-to

    084014

  • UT code for WoS article

    000482548900003

  • EID of the result in the Scopus database

    2-s2.0-85072301090