Promoting the Knowledge of Source Syntax in Transformer NMT Is Not Needed
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405528" target="_blank" >RIV/00216208:11320/19:10405528 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=PazElY0WnY" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=PazElY0WnY</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13053/CyS-23-3-3265" target="_blank" >10.13053/CyS-23-3-3265</a>
Alternative languages
Result language
angličtina
Original language name
Promoting the Knowledge of Source Syntax in Transformer NMT Is Not Needed
Original language description
The utility of linguistic annotation in neural machine translation seemed to had been established in past papers. The experiments were however limited to recurrent sequence-to-sequence architectures and relatively small data settings. We focus on the state-of-the-art Transformer model and use comparably larger corpora. Specifically, we try to promote the knowledge of source-side syntax using multi-task learning either through simple data manipulation techniques or through a dedicated model component. In particular, we train one of Transformer attention heads to produce source-side dependency tree. Overall, our results cast some doubt on the utility of multi-task setups with linguistic information. The data manipulation techniques, recommended in previous works, prove ineffective in large data settings. The treatment of self-attention as dependencies seems much more promising: it helps in translation and reveals that Transformer model can very easily grasp the syntactic structure. An important but curi
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-26934X" target="_blank" >GX19-26934X: Neural Representations in Multi-modal and Multi-lingual Modeling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computacion y Sistemas
ISSN
1405-5546
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
3
Country of publishing house
MX - MEXICO
Number of pages
12
Pages from-to
923-934
UT code for WoS article
000489136900029
EID of the result in the Scopus database
2-s2.0-85076684081