All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Automatic Quality Estimation for Natural Language Generation: Ranting (Jointly Rating and Ranking)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405564" target="_blank" >RIV/00216208:11320/19:10405564 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.aclweb.org/anthology/W19-8644/" target="_blank" >https://www.aclweb.org/anthology/W19-8644/</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Automatic Quality Estimation for Natural Language Generation: Ranting (Jointly Rating and Ranking)

  • Original language description

    We present a recurrent neural network based system for automatic quality estimation of natural language generation (NLG) outputs, which jointly learns to assign numerical ratings to individual outputs and to provide pairwise rankings of two different outputs. The latter is trained using pairwise hinge loss over scores from two copies of the rating network. We use learning to rank and synthetic data to improve the quality of ratings assigned by our system: we synthesise training pairs of distorted system outputs and train the system to rank the less distorted one higher. This leads to a 12% increase in correlation with human ratings over the previous benchmark. We also establish the state of the art on the dataset of relative rankings from the E2E NLG Challenge (Dušek et al., 2019), where synthetic data lead to a 4% accuracy increase over the base model.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 12th International Conference on Natural Language Generation (INLG 2019)

  • ISBN

    978-1-950737-94-9

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    369-376

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Stroudsubrgh, PA, USA

  • Event location

    Tokyo, Japan

  • Event date

    Oct 29, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article