Derivational Morphological Relations in Word Embeddings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405586" target="_blank" >RIV/00216208:11320/19:10405586 - isvavai.cz</a>
Result on the web
<a href="https://www.aclweb.org/anthology/W19-4818/" target="_blank" >https://www.aclweb.org/anthology/W19-4818/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/W19-4818" target="_blank" >10.18653/v1/W19-4818</a>
Alternative languages
Result language
angličtina
Original language name
Derivational Morphological Relations in Word Embeddings
Original language description
Derivation is a type of a word-formation process which creates new words from existing ones by adding, changing or deleting affixes. In this paper, we explore the potential of word embeddings to identify properties of word derivations in the morphologically rich Czech language. We extract derivational relations between pairs of words from DeriNet, a Czech lexical network, which organizes almost one million Czech lemmas into derivational trees. For each such pair, we compute the difference of the embeddings of the two words, and perform unsupervised clustering of the resulting vectors. Our results show that these clusters largely match manually annotated semantic categories of the derivational relations (e.g. the relation 'bake-baker' belongs to category 'actor', and a correct clustering puts it into the same cluster as 'govern-governor').
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
The BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP at ACL 2019
ISBN
978-1-950737-30-7
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
173-180
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Firenze, Italy
Event date
Aug 1, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—