Multimodal Abstractive Summarization for How2 Videos
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405592" target="_blank" >RIV/00216208:11320/19:10405592 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Multimodal Abstractive Summarization for How2 Videos
Original language description
In this paper, we study abstractive summarization for open-domain videos. Unlike the traditional text news summarization, the goal is less to "compress" text information but rather to provide a fluent textual summary of information that has been collected and fused from different source modalities, in our case video and audio transcripts (or text). We show how a multi-source sequence-to-sequence model with hierarchical attention can integrate information from different modalities into a coherent output, compare various models trained with different modalities and present pilot experiments on the How2 corpus of instructional videos. We also propose a new evaluation metric (Content F1) for abstractive summarization task that measures semantic adequacy rather than fluency of the summaries, which is covered by metrics like ROUGE and BLEU.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-26934X" target="_blank" >GX19-26934X: Neural Representations in Multi-modal and Multi-lingual Modeling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
ISBN
978-1-950737-48-2
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
6587-6596
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Firenze, Italy
Event date
Jul 28, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—