Neural Architectures for Nested NER through Linearization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405609" target="_blank" >RIV/00216208:11320/19:10405609 - isvavai.cz</a>
Result on the web
<a href="https://www.aclweb.org/anthology/P19-1527.pdf" target="_blank" >https://www.aclweb.org/anthology/P19-1527.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/P19-1527" target="_blank" >10.18653/v1/P19-1527</a>
Alternative languages
Result language
angličtina
Original language name
Neural Architectures for Nested NER through Linearization
Original language description
We propose two neural network architectures for nested named entity recognition (NER), a setting in which named entities may overlap and also be labeled with more than one label. We encode the nested labels using a linearized scheme. In our first proposed approach, the nested labels are modeled as multilabels corresponding to the Cartesian product of the nested labels in a standard LSTM-CRF architecture. In the second one, the nested NER is viewed as a sequence-to-sequence problem, in which the input sequence consists of the tokens and output sequence of the labels, using hard attention on the word whose label is being predicted. The proposed methods outperform the nested NER state of the art on four corpora: ACE-2004, ACE-2005, GENIA and Czech CNEC. We also enrich our architectures with the recently published contextual embeddings: ELMo, BERT and Flair, reaching further improvements for the four nested entity corpora. In addition, we report flat NER state-of-the-art results for CoNLL-2002 Dutch and S
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
ISBN
978-1-950737-48-2
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
5326-5331
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Firenze, Italy
Event date
Jul 28, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000493046107085