Unsupervised Pretraining for Neural Machine Translation Using Elastic Weight Consolidation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405613" target="_blank" >RIV/00216208:11320/19:10405613 - isvavai.cz</a>
Result on the web
<a href="https://www.aclweb.org/anthology/P19-2017.pdf" target="_blank" >https://www.aclweb.org/anthology/P19-2017.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Unsupervised Pretraining for Neural Machine Translation Using Elastic Weight Consolidation
Original language description
This work presents our ongoing research of unsupervised pretraining in neural machine translation (NMT). In our method, we initialize the weights of the encoder and decoder with two language models that are trained with monolingual data and then fine-tune the model on parallel data using Elastic Weight Consolidation (EWC) to avoid forgetting of the original language modeling tasks. We compare the regularization by EWC with the previous work that focuses on regularization by language modeling objectives. The positive result is that using EWC with the decoder achieves BLEU scores similar to the previous work. However, the model converges 2-3 times faster and does not require the original unlabeled training data during the finetuning stage. In contrast, the regularization using EWC is less effective if the original and new tasks are not closely related. We show that initializing the bidirectional NMT encoder with a left-toright language model and forcing the model to remember the original left-to-right l
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-26934X" target="_blank" >GX19-26934X: Neural Representations in Multi-modal and Multi-lingual Modeling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop
ISBN
978-1-950737-47-5
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
130-135
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Firenze, Italy
Event date
Jul 28, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—