Keyphrase Generation: A Text Summarization Struggle
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405617" target="_blank" >RIV/00216208:11320/19:10405617 - isvavai.cz</a>
Result on the web
<a href="https://www.aclweb.org/anthology/N19-1070" target="_blank" >https://www.aclweb.org/anthology/N19-1070</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/N19-1070" target="_blank" >10.18653/v1/N19-1070</a>
Alternative languages
Result language
angličtina
Original language name
Keyphrase Generation: A Text Summarization Struggle
Original language description
Authors' keyphrases assigned to scientific articles are essential for recognizing content and topic aspects. Most of the proposed supervised and unsupervised methods for keyphrase generation are unable to produce terms that are valuable but do not appear in the text. In this paper, we explore the possibility of considering the keyphrase string as an abstractive summary of the title and the abstract. First, we collect, process and release a large dataset of scientific paper metadata that contains 2.2 million records. Then we experiment with popular text summarization neural architectures. Despite using advanced deep learning models, large quantities of training data and many days of computation, our systematic evaluation on four test datasets reveals that the explored text summarization methods could not produce better keyphrases than the much simpler unsupervised methods or the existing supervised ones.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
The 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
ISBN
978-1-950737-13-0
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
666-672
Publisher name
NAACL-HLT 2019
Place of publication
Minneapolis, USA
Event location
Minneapolis, USA
Event date
Jun 2, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—