All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Well-posedness and maximum principles for lattice reaction-diffusion equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405683" target="_blank" >RIV/00216208:11320/19:10405683 - isvavai.cz</a>

  • Alternative codes found

    RIV/49777513:23520/19:43954782

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cbBUtnu.Hf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cbBUtnu.Hf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/anona-2016-0116" target="_blank" >10.1515/anona-2016-0116</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Well-posedness and maximum principles for lattice reaction-diffusion equations

  • Original language description

    Existence, uniqueness and continuous dependence results together with maximum principles represent key tools in the analysis of lattice reaction-diffusion equations. In this paper, we study these questions in full generality by considering nonautonomous reaction functions, possibly nonsymmetric diffusion and continuous, discrete or mixed time. First, we prove the local existence and global uniqueness of bounded solutions, as well as the continuous dependence of solutions on the underlying time structure and on initial conditions. Next, we obtain the weak maximum principle which enables us to get the global existence of solutions. Finally, we provide the strong maximum principle which exhibits an interesting dependence on the time structure. Our results are illustrated by the autonomous Fisher and Nagumo lattice equations and a nonautonomous logistic population model with a variable carrying capacity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA15-07690S" target="_blank" >GA15-07690S: Partial Difference and Differential Equations on Lattices</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Nonlinear Analysis

  • ISSN

    2191-9496

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    20

  • Pages from-to

    303-322

  • UT code for WoS article

    000459891200016

  • EID of the result in the Scopus database

    2-s2.0-85020283199