All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Equatorial Propagation of the Magnetosonic Mode Across the Plasmapause: 2-D PIC Simulations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405870" target="_blank" >RIV/00216208:11320/19:10405870 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pxjo2O_CI1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pxjo2O_CI1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2019JA026567" target="_blank" >10.1029/2019JA026567</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Equatorial Propagation of the Magnetosonic Mode Across the Plasmapause: 2-D PIC Simulations

  • Original language description

    Recent studies have indicated that fast magnetosonic waves (also referred to as equatorial noise) excited far outside the plasmapause cannot propagate deep into the plasmasphere because of the preferential azimuthal propagation of the waves at the source region. Since conditions in the low-density plasma trough are typically favorable for the wave excitation, one possible explanation for the magnetosonic wave origin inside the plasmapause is refraction of the waves excited in the plasma trough but close to the plasmapause. In this study, two-dimensional particle-in-cell (PIC) simulations are carried out at the dipole magnetic equator to investigate the self-consistent excitation and propagation of magnetosonic waves across the steep plasmapause density gradient. The simulations show that the magnetosonic waves grow outside the plasmapause and propagate predominantly in the azimuthal direction. However, the waves excited close to the plasmapause experience refraction toward the density gradient, allowing them to cross the plasmapause and then propagate dominantly toward the Earth. The amount of refraction is in good agreement with a theoretical prediction based on the geometric optic approximation. We find that the refraction at the plasmapause can redirect magnetosonic waves toward the Earth, but an additional mechanism is needed to account for the statistical properties of the wave electric field polarization reported in the plasmasphere.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/GA18-00844S" target="_blank" >GA18-00844S: Quasiperiodic modulation of magnetospheric plasma waves</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Geophysical Research: Space Physics

  • ISSN

    2169-9380

  • e-ISSN

  • Volume of the periodical

    124

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    21

  • Pages from-to

    4424-4444

  • UT code for WoS article

    000477723100038

  • EID of the result in the Scopus database

    2-s2.0-85068222317