All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The influence of strain on the Verwey transition as a function of dopant concentration: towards a geobarometer for magnetite-bearing rocks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10406522" target="_blank" >RIV/00216208:11320/19:10406522 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VKxv4oBHmb" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VKxv4oBHmb</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/gji/ggz274" target="_blank" >10.1093/gji/ggz274</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The influence of strain on the Verwey transition as a function of dopant concentration: towards a geobarometer for magnetite-bearing rocks

  • Original language description

    Magnetite is an abundant magnetic mineral that commonly records the ancient magnetic field in a wide variety of rock types. When cooled below approximate to 124 K, magnetite undergoes a phase transition, called the Verwey transition, whose characteristics are highly sensitive to grain size and stoichiometry. Studying the Verwey transition thus yields information on the formation conditions and compositions of rocks. The transition is also stress sensitive, thereby opening an avenue to understanding a rock&apos;s strain history; however, the reason for the stress sensitivity is poorly understood. In particular, the temperature of the transition decreases when measured under pressure, yet mostly increases upon pressure release. Moreover, the stress sensitivity of the transition as a function of dopant concentration, especially after pressure cycling, was never systematically tested. We addressed these issues in order to further develop magnetite as a pressure gauge. Multidomain magnetite samples were pressure cycled up to maximum pressures of similar to 5GPa at room temperature to measure the influence of strain on the Verwey transition temperature as a function of dopant concentration after full decompression. The transition temperature measured via changes in magnetic remanence (T-V(M)) systematically increased with respect to pressure (P) in more doped samples, where domain wall pinning from impurities dominates dT(V)(M)/dP. In less doped samples, no to only moderate pressure cycling dependence on T-V(M) was observed. Bulk coercive force (B-c) and magnetic remanence after saturation (M-rs) measured above or below the transition also increased with respect to pressure, but here effects related to permanent strain of the lattice structure prevail, and B-c versus P is steeper for less doped samples. B-c versus P increases in all cases, with a difference in slope dictated by dopant concentrations segregating the first to second-order nature of the transition. Thus, strain developed during pressure cycling controls T-V(M) and coercivity by a mechanism based on pinning of magnetic domains by both interstitial cations and structural lattice distortions. The combined observables, T-V(M) and B-c -M-rs, reflect both the dopant level and strain state of magnetite, which can quantify the pressure multidomain magnetite has experienced, especially in the range between 1 and 5GPa. Based on these new results, we present a model that distinguishes between electronic versus defect-driven processes explaining the strain-related influences on the transition. Magnetite&apos;s use as a geobarometer is thus a measure of its defect state, which is expressed through two somewhat independent mechanisms when sensed by magnetic observations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geophysical Journal International

  • ISSN

    0956-540X

  • e-ISSN

  • Volume of the periodical

    219

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    148-158

  • UT code for WoS article

    000484124800009

  • EID of the result in the Scopus database

    2-s2.0-85069712484