All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Wide Gamut Spectral Upsampling with Fluorescence

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10407241" target="_blank" >RIV/00216208:11320/19:10407241 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=WlSs6TwNC2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=WlSs6TwNC2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/cgf.13773" target="_blank" >10.1111/cgf.13773</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Wide Gamut Spectral Upsampling with Fluorescence

  • Original language description

    Physically based spectral rendering has become increasingly important in recent years. However, asset textures in such systems are usually still drawn or acquired as RGB tristimulus values. While a number of RGB to spectrum upsampling techniques are available, none of them support upsampling of all colours in the full spectral locus, as it is intrinsically bigger than the gamut of physically valid reflectance spectra. But with display technology moving to increasingly wider gamuts, the ability to achieve highly saturated colours becomes an increasingly important feature. Real materials usually exhibit smooth reflectance spectra, while computationally generated spectra become more blocky as they represent increasingly bright and saturated colours. In print media, plastic or textile design, fluorescent dyes are added to extend the boundaries of the gamut of reflectance spectra. We follow the same approach for rendering: we provide a method which, given an input RGB tristimulus value, automatically provides a mixture of a regular, smooth reflectance spectrum plus a fluorescent part. For highly saturated input colours, the combination yields an improved reconstruction compared to what would be possible relying on a reflectance spectrum alone. At the core of our technique is a simple parametric spectral model for reflectance, excitation, and emission that allows for compact storage and is compatible with texture mapping. The model can then be used as a fluorescent diffuse component in an existing more complex BRDF model. We also provide importance sampling routines for practical application in a path tracer.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA16-08111S" target="_blank" >GA16-08111S: Efficient rendering of light polarisation effects in nontrivial scenes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computer Graphics Forum

  • ISSN

    0167-7055

  • e-ISSN

  • Volume of the periodical

    38

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    87-96

  • UT code for WoS article

    000477912100009

  • EID of the result in the Scopus database

    2-s2.0-85070060137