Non-metric similarity search using genetic TriGen
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10407733" target="_blank" >RIV/00216208:11320/19:10407733 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/19:00335054
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-32047-8_8" target="_blank" >http://dx.doi.org/10.1007/978-3-030-32047-8_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-32047-8_8" target="_blank" >10.1007/978-3-030-32047-8_8</a>
Alternative languages
Result language
angličtina
Original language name
Non-metric similarity search using genetic TriGen
Original language description
The metric space model is a popular and extensible model for indexing data for fast similarity search. However, there is often need for broader concepts of similarities (beyond the metric space model) while these cannot directly benefit from metric indexing. This paper focuses on approximate search in semi-metric spaces using a genetic variant of the TriGen algorithm. The original TriGen algorithm generates metric modifications of semi-metric distance functions, thus allowing metric indexes to index non-metric models. However, "analytic" modifications provided by TriGen are not stable in predicting the retrieval error. In our approach, the genetic variant of TriGen - the TriGenGA - uses genetically learned semi-metric modifiers (piecewise linear functions) that lead to better estimates of the retrieval error. Additionally, the TriGenGA modifiers result in better overall performance than original TriGen modifiers.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-22224S" target="_blank" >GA17-22224S: User preference analytics in multimedia exploration models</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science
ISBN
978-3-030-32046-1
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
86-93
Publisher name
Springer International Publishing
Place of publication
Cham
Event location
Newark NJ, USA
Event date
Oct 2, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—