All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-metric similarity search using genetic TriGen

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10407733" target="_blank" >RIV/00216208:11320/19:10407733 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21240/19:00335054

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-32047-8_8" target="_blank" >http://dx.doi.org/10.1007/978-3-030-32047-8_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-32047-8_8" target="_blank" >10.1007/978-3-030-32047-8_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-metric similarity search using genetic TriGen

  • Original language description

    The metric space model is a popular and extensible model for indexing data for fast similarity search. However, there is often need for broader concepts of similarities (beyond the metric space model) while these cannot directly benefit from metric indexing. This paper focuses on approximate search in semi-metric spaces using a genetic variant of the TriGen algorithm. The original TriGen algorithm generates metric modifications of semi-metric distance functions, thus allowing metric indexes to index non-metric models. However, &quot;analytic&quot; modifications provided by TriGen are not stable in predicting the retrieval error. In our approach, the genetic variant of TriGen - the TriGenGA - uses genetically learned semi-metric modifiers (piecewise linear functions) that lead to better estimates of the retrieval error. Additionally, the TriGenGA modifiers result in better overall performance than original TriGen modifiers.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA17-22224S" target="_blank" >GA17-22224S: User preference analytics in multimedia exploration models</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science

  • ISBN

    978-3-030-32046-1

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    86-93

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Newark NJ, USA

  • Event date

    Oct 2, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article