All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Exponential Scaling and the Time Growth of the Error of DG for Advection-Reaction Problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10407768" target="_blank" >RIV/00216208:11320/19:10407768 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-96415-7_91" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-96415-7_91</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-96415-7_91" target="_blank" >10.1007/978-3-319-96415-7_91</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Exponential Scaling and the Time Growth of the Error of DG for Advection-Reaction Problems

  • Original language description

    We present an overview of the results of the authors&apos; paper (Kučera and Shu, IMA J Numer Anal, to appear) on the time growth of the error of the discontinuous Galerkin (DG) method and set them in appropriate context. The application of Gronwall&apos;s lemma gives estimates which grow exponentially in time even for problems where such behavior does not occur. In the case of a nonstationary advection-diffusion equation we can circumvent this problem by considering a general space-time exponential scaling argument. Thus we obtain error estimates for DG which grow exponentially not in time, but in the time particles carried by the flow field spend in the spatial domain. If this is uniformly bounded, one obtains an error estimate of the form C(h^(p+1/2)), where C is independent of time.We discuss the time growth of the exact solution and the exponential scaling argument and give an overview of results from Kučera and Shu (IMA J Numer Anal, to appear) and the tools necessary for the analysis.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Numerical Mathematics and Advanced Applications ENUMATH 2017

  • ISBN

    978-3-319-96414-0

  • ISSN

    1439-7358

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    963-971

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Voss, Norway

  • Event date

    Sep 25, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article