Rough maximal bilinear singular integrals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10408172" target="_blank" >RIV/00216208:11320/19:10408172 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vYNS-9BIEE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vYNS-9BIEE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13348-019-00239-4" target="_blank" >10.1007/s13348-019-00239-4</a>
Alternative languages
Result language
angličtina
Original language name
Rough maximal bilinear singular integrals
Original language description
We show that the bilinear rough maximal singular integrals are bounded on a range of L^p spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-07996S" target="_blank" >GA18-07996S: Geometric and Harmonic Analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Collectanea Mathematica
ISSN
0010-0757
e-ISSN
—
Volume of the periodical
70
Issue of the periodical within the volume
3
Country of publishing house
ES - SPAIN
Number of pages
16
Pages from-to
431-446
UT code for WoS article
000480482100005
EID of the result in the Scopus database
2-s2.0-85070406872