A Framework for Tunable Anomaly Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10408439" target="_blank" >RIV/00216208:11320/19:10408439 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/ICSA.2019.00029" target="_blank" >https://doi.org/10.1109/ICSA.2019.00029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICSA.2019.00029" target="_blank" >10.1109/ICSA.2019.00029</a>
Alternative languages
Result language
angličtina
Original language name
A Framework for Tunable Anomaly Detection
Original language description
As software architecture practice relies more and more on runtime data to inform decisions in continuous experimentation and self-adaptation, it is increasingly important to consider the quality of the data used as input to the different decision-making and prediction algorithms. One issue in data-driven decisions is that real-life data coming from running systems can contain invalid or wrong values which can bias the result of data analysis. Data-driven decision-making should therefore comprise detection and handling of data anomalies as an integral part of the process. However, currently, anomaly detection is either absent in runtime decision-making approaches for continuous experimentation and self-adaptation or difficult to tailor to domain-specific needs. In this paper, we contribute by proposing a framework that simplifies the detection of data anomalies in timeseries-outputs of running systems. The framework is generic, since it can be employed in different domains, and tunable, since it uses expert user input in tailoring anomaly detection to the needs and assumptions of each domain. We evaluate the feasibility of the framework by successfully applying it to detecting anomalies in a real-life timeseries dataset from the traffic domain.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2019 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE (ICSA)
ISBN
978-1-72810-528-4
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
201-210
Publisher name
IEEE
Place of publication
NEW YORK
Event location
Hamburg
Event date
Mar 25, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000470066100021