All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dynamic credit default swap curves in a network topology

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10423259" target="_blank" >RIV/00216208:11320/19:10423259 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tc2f1ormEK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tc2f1ormEK</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/14697688.2019.1585560" target="_blank" >10.1080/14697688.2019.1585560</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dynamic credit default swap curves in a network topology

  • Original language description

    Systemically important banks are connected and their default probabilities have dynamic dependencies. An extraction of default factors from cross-sectional credit default swap (CDS) curves allows us to analyze the shape and the dynamics of default probabilities. In extending the Dynamic Nelson Siegel (DNS) model to an across firm multivariate setting, and employing the generalized variance decomposition of Diebold and Yilmaz [On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econom., 2014, 182(1), 119-134], we are able to establish a DNS network topology. Its geometry yields a platform to analyze the interconnectedness of long-, middle- and short-term default factors in a dynamic fashion and to forecast the CDS curves. Our analysis concentrates on 10 financial institutions with CDS curves comprising of a wide range of time-to-maturities. The extracted level factor representing long-term default risk shows a higher level of total connectedness than those derived for short-term and middle-term default risk, respectively. US banks contributed more to the long-term default spillover before 2012, whereas European banks were major default transmitters during and after the European debt crisis, both in the longterm and short-term. The comparison of the network DNS model with alternatives proposed in the literature indicates that our approach yields superior forecast properties of CDS curves.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GX19-28231X" target="_blank" >GX19-28231X: DyMoDiF - Dynamic Models for the Digital Finance</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Quantitative Finance

  • ISSN

    1469-7688

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    22

  • Pages from-to

    1705-1726

  • UT code for WoS article

    000535659600009

  • EID of the result in the Scopus database

    2-s2.0-85062940642