All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Replacing Linguists with Dummies: A Serious Need for Trivial Baselinesin Multi-Task Neural Machine Translation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10424313" target="_blank" >RIV/00216208:11320/19:10424313 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Yp3xWRebsm" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Yp3xWRebsm</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Replacing Linguists with Dummies: A Serious Need for Trivial Baselinesin Multi-Task Neural Machine Translation

  • Original language description

    Recent developments in machine translation experiment with the idea that a model can improve the translation quality by performing multiple tasks, e.g., translating from source to target and also labeling each source word with syntactic information. The intuition is that the network would generalize knowledge over the multiple tasks, improving the translation performance, especially in low resource conditions. We devised an experiment that casts doubt on this intuition. We perform similar experiments in both multi-decoder and interleaving setups that label each target word either with a syntactic tag or a completely random tag. Surprisingly, we show that the model performs nearly as well on uncorrelated random tags as on true syntactic tags. We hint some possible explanations of this behavior. The main message from our article is that experimental results with deep neural networks should always be complemented with trivial baselines to document that the observed gain is not due to some unrelated prope

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX19-26934X" target="_blank" >GX19-26934X: Neural Representations in Multi-modal and Multi-lingual Modeling</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    The Prague Bulletin of Mathematical Linguistics

  • ISSN

    0032-6585

  • e-ISSN

  • Volume of the periodical

    113

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    10

  • Pages from-to

    31-40

  • UT code for WoS article

  • EID of the result in the Scopus database