Graph-based Dependency Parsing with Graph Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427125" target="_blank" >RIV/00216208:11320/19:10427125 - isvavai.cz</a>
Result on the web
<a href="https://www.aclweb.org/anthology/P19-1237" target="_blank" >https://www.aclweb.org/anthology/P19-1237</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Graph-based Dependency Parsing with Graph Neural Networks
Original language description
We investigate the problem of efficiently incorporating high-order features into neural graph-based dependency parsing. Instead of explicitly extracting high-order features from intermediate parse trees, we develop a more powerful dependency tree node representation which captures high-order information concisely and efficiently. We use graph neural networks (GNNs) to learn the representations and discuss several new configurations of GNN's updating and aggregation functions. Experiments on PTB show that our parser achieves the best UAS and LAS on PTB (96.0%, 94.3%) among systems without using any external resources.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů