Exploring Multilingual Syntactic Sentence Representations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427135" target="_blank" >RIV/00216208:11320/19:10427135 - isvavai.cz</a>
Result on the web
<a href="https://www.aclweb.org/anthology/D19-5521" target="_blank" >https://www.aclweb.org/anthology/D19-5521</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Exploring Multilingual Syntactic Sentence Representations
Original language description
We study methods for learning sentence embeddings with syntactic structure. We focus on methods of learning syntactic sentence-embeddings by using a multilingual parallel-corpus augmented by Universal Parts-of-Speech tags. We evaluate the quality of the learned embeddings by examining sentence-level nearest neighbours and functional dissimilarity in the embedding space. We also evaluate the ability of the method to learn syntactic sentence-embeddings for low-resource languages and demonstrate strong evidence for transfer learning. Our results show that syntactic sentence-embeddings can be learned while using less training data, fewer model parameters, and resulting in better evaluation metrics than state-of-the-art language models.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů