Terminology-Aware Segmentation and Domain Feature for the WMT19 Biomedical Translation Task
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427149" target="_blank" >RIV/00216208:11320/19:10427149 - isvavai.cz</a>
Result on the web
<a href="https://www.aclweb.org/anthology/W19-5418" target="_blank" >https://www.aclweb.org/anthology/W19-5418</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Terminology-Aware Segmentation and Domain Feature for the WMT19 Biomedical Translation Task
Original language description
In this work, we give a description of the TALP-UPC systems submitted for the WMT19 Biomedical Translation Task. Our proposed strategy is NMT model-independent and relies only on one ingredient, a biomedical terminology list. We first extracted such a terminology list by labelling biomedical words in our training dataset using the BabelNet API. Then, we designed a data preparation strategy to insert the terms information at a token level. Finally, we trained the Transformer model with this terms-informed data. Our best-submitted system ranked 2nd and 3rd for Spanish-English and English-Spanish translation directions, respectively.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů