What does Neural Bring? Analysing Improvements in Morphosyntactic Annotation and Lemmatisation of Slovenian, Croatian and Serbian
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427160" target="_blank" >RIV/00216208:11320/19:10427160 - isvavai.cz</a>
Result on the web
<a href="https://www.aclweb.org/anthology/W19-3704" target="_blank" >https://www.aclweb.org/anthology/W19-3704</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
What does Neural Bring? Analysing Improvements in Morphosyntactic Annotation and Lemmatisation of Slovenian, Croatian and Serbian
Original language description
We present experiments on Slovenian, Croatian and Serbian morphosyntactic annotation and lemmatisation between the former state-of-the-art for these three languages and one of the best performing systems at the CoNLL 2018 shared task, the Stanford NLP neural pipeline. Our experiments show significant improvements in morphosyntactic annotation, especially on categories where either semantic knowledge is needed, available through word embeddings, or where long-range dependencies have to be modelled. On the other hand, on the task of lemmatisation no improvements are obtained with the neural solution, mostly due to the heavy dependence of the task on the lookup in an external lexicon, but also due to obvious room for improvements in the Stanford NLP pipeline's lemmatisation.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů