On the growth of the Mobius function of permutations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10403028" target="_blank" >RIV/00216208:11320/20:10403028 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0SdOBTFjoy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0SdOBTFjoy</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcta.2019.105121" target="_blank" >10.1016/j.jcta.2019.105121</a>
Alternative languages
Result language
angličtina
Original language name
On the growth of the Mobius function of permutations
Original language description
We study the values of the Mobius function mu of intervals in the containment poset of permutations. We construct a sequence of permutations pi(n) of size 2n - 2 for which mu(1, pi(n)) is given by a polynomial in n of degree 7. This construction provides the fastest known growth of vertical bar mu(1, pi)vertical bar in terms of vertical bar pi vertical bar, improving a previous quadratic bound by Smith. Our approach is based on a formula expressing the Mobil's function of an arbitrary permutation interval [alpha, beta] in terms of the number of embeddings of the elements of the interval into beta.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ16-01602Y" target="_blank" >GJ16-01602Y: Topological and geometric approaches to classes of permutations and graph properties</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory - Series A
ISSN
0097-3165
e-ISSN
—
Volume of the periodical
169
Issue of the periodical within the volume
January 2020
Country of publishing house
US - UNITED STATES
Number of pages
32
Pages from-to
105121
UT code for WoS article
000492089800004
EID of the result in the Scopus database
2-s2.0-85069738858