All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ramsey numbers of ordered graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10404409" target="_blank" >RIV/00216208:11320/20:10404409 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Rw5aFQuyQI" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Rw5aFQuyQI</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.37236/7816" target="_blank" >10.37236/7816</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ramsey numbers of ordered graphs

  • Original language description

    An ordered graph is a pair G=(G,&lt;) where G is a graph and &lt; is a total ordering of its vertices. The ordered Ramsey number R(G) is the minimum number N such that every ordered complete graph with N vertices and with edges colored by two colors contains a monochromatic copy of G. We show that there are arbitrarily large ordered matchings M_n on n vertices for which R(M_n) is superpolynomial in n. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain linear in another ordering. We also prove that the ordered Ramsey number R(G) is polynomial in the number of vertices of G if the bandwidth of G is constant or if G is an ordered graph of constant degeneracy and constant interval chromatic number.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Journal of Combinatorics

  • ISSN

    1077-8926

  • e-ISSN

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    27

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    32

  • Pages from-to

    P1.16

  • UT code for WoS article

    000506406700016

  • EID of the result in the Scopus database

    2-s2.0-85078845229