Tracking the ultrafast nonequilibrium energy flow between electronic and lattice degrees of freedom in crystalline nickel
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10411125" target="_blank" >RIV/00216208:11320/20:10411125 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Lm7_X~arE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Lm7_X~arE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.101.100302" target="_blank" >10.1103/PhysRevB.101.100302</a>
Alternative languages
Result language
angličtina
Original language name
Tracking the ultrafast nonequilibrium energy flow between electronic and lattice degrees of freedom in crystalline nickel
Original language description
Femtosecond laser excitation of solid-state systems creates out-of-equilibrium hot electrons that cool down by transferring their energy to other degrees of freedom and ultimately to lattice vibrations of the solid. By combining ab initio calculations with ultrafast diffuse electron scattering, we gain a detailed understanding of the complex nonequilibrium energy transfer between electrons and phonons in laser-excited Ni metal. Our experimental results show that the wave-vector-resolved population dynamics of phonon modes is distinctly different throughout the Brillouin zone and are in remarkable agreement with our theoretical results. We find that zone-boundary phonon modes become occupied first. As soon as the energy in these modes becomes larger than the average electron energy, a backflow of energy from lattice to electronic degrees of freedom occurs. Subsequent excitation of lower-energy phonon modes drives the thermalization of the whole system on the picosecond time scale. We determine the evolving nonequilibrium phonon occupations, which we find to deviate markedly from thermal occupations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/GJ15-08740Y" target="_blank" >GJ15-08740Y: Spin current generation on a femtosecond timescale</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review B
ISSN
2469-9950
e-ISSN
—
Volume of the periodical
101
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
100302
UT code for WoS article
000519632400001
EID of the result in the Scopus database
2-s2.0-85083167665