Complex interplay of magnetic interactions in 5f-electron systems: The case of U2Ni2Sn
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10412838" target="_blank" >RIV/00216208:11320/20:10412838 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=upbpJWzy6D" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=upbpJWzy6D</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.101.184433" target="_blank" >10.1103/PhysRevB.101.184433</a>
Alternative languages
Result language
angličtina
Original language name
Complex interplay of magnetic interactions in 5f-electron systems: The case of U2Ni2Sn
Original language description
Recent experiments on a single crystal of U2Ni2Sn established a strong uniaxial magnetic anisotropy and an unusual magnetic structure that is antiferromagnetic both inside the U layers and between the layers. We apply fully relativistic first-principles calculations to investigate various magnetic configurations of the system. The calculations confirmed both the character of the magnetic anisotropy and the type of the ground-state magnetic structure. The study of the electron density of states shows that the lowest energy of the ground-state structure is related to the doubling of the magnetic unit cell and corresponding reduction of the Brillouin zone, leading to the formation of the energy gaps in the electronic structure. The mapping of the energies of the magnetic structures on the Heisenberg Hamiltonian of interacting atomic moments leads to a surprising result that only one of the interatomic exchange interactions is antiferromagnetic. We explain how this one antiferromagnetic interaction competing with several ferromagnetic interactions leads to the simultaneous presence of two types of antiferromagnetic behavior. We provide a simple mean-field estimate of the Neel temperature and conclude that short-range magnetic order, neglected on the mean-field level, may play an important role at temperatures around the critical temperature. We demonstrate the existence of self-consistent noncollinear magnetic states that limits the accuracy of treating U2Ni2Sn as a pure Ising magnet. We apply GGA + U method to examine the influence of the Hubbard parameter U on the magnetic moments and energies of the magnetic configurations. An estimation of the influence of the contraction of the lattice on the magnetic properties is reported.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/GA18-02344S" target="_blank" >GA18-02344S: Magnetism and electronic structure in Uranium systems with a charge transfer</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review B
ISSN
2469-9950
e-ISSN
—
Volume of the periodical
101
Issue of the periodical within the volume
18
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
184433
UT code for WoS article
000535860000005
EID of the result in the Scopus database
2-s2.0-85090154184