Accelerating NUT black holes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10414707" target="_blank" >RIV/00216208:11320/20:10414707 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dZEMFuZMPU" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dZEMFuZMPU</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.102.084024" target="_blank" >10.1103/PhysRevD.102.084024</a>
Alternative languages
Result language
angličtina
Original language name
Accelerating NUT black holes
Original language description
We present and analyze a class of exact spacetimes which describe accelerating black holes with a NUT parameter. First, we verify that the intricate metric found by Chng, Mann and Stelea in 2006 indeed solves Einstein's vacuum field equations of General Relativity. We explicitly calculate all components of the Weyl tensor and determine its algebraic structure. As it turns out, it is actually of algebraically general type I with four distinct principal null directions. It explains why this class of solutions has not been (and could not be) found within the large Plebanski-Demianski family of type D spacetimes. Then we transform the solution into a much more convenient metric form which explicitly depends on three physical parameters: mass, acceleration, and the NUT parameter. These parameters can independently be set to zero, recovering thus the well-known spacetimes in standard coordinates, namely the C-metric, the Taub-NUT metric, the Schwarzschild metric, and flat Minkowski space. Using this new metric, we investigate physical and geometrical properties of such accelerating NUT black holes. In particular, we localize and study four Killing horizons (two black-hole plus two acceleration) and investigate the curvature. Employing the scalar invariants we prove that there are no curvature singularities whenever the NUT parameter is nonzero. We identify asymptotically flat regions and relate them to conformal infinities. This leads to a complete understanding of the global structure. The boost-rotation metric form reveals that there is actually a pair of such black holes. They uniformly accelerate in opposite directions due to the action of rotating cosmic strings or struts located along the corresponding two axes. Rotation of these sources is directly related to the NUT parameter. In their vicinity there are pathological regions with closed timelike curves.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GA20-05421S" target="_blank" >GA20-05421S: Exact Spacetimes in Einstein’s Theory, Quadratic Gravity, and Other Generalizations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review D
ISSN
2470-0010
e-ISSN
—
Volume of the periodical
102
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
084024
UT code for WoS article
000576601200006
EID of the result in the Scopus database
2-s2.0-85093535211