All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Irreducible 4-critical triangle-free toroidal graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10416989" target="_blank" >RIV/00216208:11320/20:10416989 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8j7G67UDlS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8j7G67UDlS</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2020.103112" target="_blank" >10.1016/j.ejc.2020.103112</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Irreducible 4-critical triangle-free toroidal graphs

  • Original language description

    The theory of Dvorak, Kral&apos;, and Thomas (Dvorak, 2015) shows that a 4-critical triangle-free graph embedded in the torus has only a bounded number of faces of length greater than 4 and that the size of these faces is also bounded. We study the natural reduction in such embedded graphs-identification of opposite vertices in 4-faces. We give a computer-assisted argument showing that there are exactly four 4-critical triangle-free irreducible toroidal graphs in which this reduction cannot be applied without creating a triangle. Using this result, we show that every 4-critical triangle-free graph embedded in the torus has at most four 5-faces, or a 6-face and two 5-faces, or a 7face and a 5-face, in addition to at least seven 4-faces. This result serves as a basis for the exact description of 4-critical triangle-free toroidal graphs, which we present in a followup paper. (C) 2020 Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Volume of the periodical

    88

  • Issue of the periodical within the volume

    august

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    103112

  • UT code for WoS article

    000541875000011

  • EID of the result in the Scopus database

    2-s2.0-85088517241